Difference between revisions of "E-Beam 1 (Sharon)"

From UCSB Nanofab Wiki
Jump to: navigation, search
(Materials Table)
m (About)
 
(30 intermediate revisions by 4 users not shown)
Line 8: Line 8:
 
|description = Four Pocket Electron Beam Evaporator
 
|description = Four Pocket Electron Beam Evaporator
 
|manufacturer = Sharon Vacuum Co., Inc.
 
|manufacturer = Sharon Vacuum Co., Inc.
|materials =
 
 
|toolid=7
 
|toolid=7
 
}}
 
}}
 
= About =
 
= About =
 
 
The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.
+
The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent electron beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.
  +
  +
A new fixture allowing up to four - 4" diameter wafers is now installed.
   
 
The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.
 
The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.
   
 
= Materials Table =
 
= Materials Table =
  +
For the materials tables and deposition parameters for various materials, please visit the [[E-Beam_Evaporation_Recipes#Materials_Table_(E-Beam #1)|E-Beam Recipe Page]].
 
{| border="1" style="border: 1px solid #D0E7FF; background-color:#ffffff; text-align:center; font-size: 95%" class="collapsible collapsed wikitable"
 
|-
 
! colspan=8 width=1100 height=35 bgcolor="#D0E7FF" align="center"|<div style="font-size: 150%;">Materials Table</div>
 
|- bgcolor="#D0E7FF"
 
! width="75" bgcolor="#D0E7FF" align="center" | '''Material'''
 
! width="75" bgcolor="#D0E7FF" align="center" | '''Position'''
 
! width="75" bgcolor="#D0E7FF" align="center" | '''Hearth / Crucible'''
 
! width="85" bgcolor="#D0E7FF" align="center" | '''Film Number'''
 
! width="75" bgcolor="#D0E7FF" align="center" | '''Density'''
 
! width="75" bgcolor="#D0E7FF" align="center" | '''Z Ratio'''
 
! width="75" bgcolor="#D0E7FF" align="center" | '''Tooling'''
 
! width="500" bgcolor="#D0E7FF" align="center" | '''Comments'''
 
|-
 
| Ag
 
| 4
 
| C
 
| 5
 
| 10.5
 
| 0.524
 
| 140
 
|
 
|-
 
| Al
 
| 2
 
| C
 
| 6
 
| 2.7
 
| 1.080
 
| 118
 
|
 
|-
 
| Al<sub>2</sub>O<sub>3</sub>
 
| 1
 
| C
 
| 6
 
| 3.97
 
| 0.50
 
| 169
 
|
 
|-
 
| Au
 
| 4
 
| C
 
| 4
 
| 19.3
 
| 0.381
 
| 138
 
| Bazookas can be used at 20-30Å/sec.
 
|-
 
| AuGe
 
| 3
 
| C
 
| 5
 
| 17.63
 
| 0.397
 
| 151
 
| Composition unpredictable unless you practically empty the crucible.
 
|-
 
| Cr
 
| 3
 
| H
 
| 6
 
| 7.2
 
| 0.305
 
| 140
 
| Do not evaporate more than 200Å of Cr in the E-Beam evaporator.
 
|-
 
| Fe
 
|
 
|
 
|
 
| 7.86
 
| 0.349
 
|
 
|
 
|-
 
| Ge
 
| 3
 
| C
 
| 6
 
| 5.35
 
| 0.516
 
| 130
 
|
 
|-
 
| MgO
 
| 1
 
|
 
| 6
 
|
 
|
 
|
 
|
 
|-
 
| Mo
 
|
 
|
 
|
 
| 10.2
 
| 0.257
 
|
 
|
 
|-
 
| Ni
 
| 1
 
| H
 
| 1
 
| 8.91
 
| 0.331
 
| 140
 
| Prone to spitting. Cool down for 15 minutes before venting.
 
|-
 
| NiCr
 
| 1
 
| H
 
| 6
 
| 8.23
 
| 0.321
 
|
 
|
 
|-
 
| Nb
 
| 4
 
| C
 
| 6
 
| 8.57
 
| 0.516
 
|
 
| Cool down for at least 35 minutes before venting.
 
|-
 
| Pd
 
| 1
 
| H
 
| 9
 
| 12.0
 
| 0.357
 
| 140
 
|
 
|-
 
| Pt
 
| 1
 
| C
 
| 8
 
| 21.40
 
| 0.245
 
| 140
 
| Prone to spitting. Evaporate at 1.5Å/sec or less.
 
|-
 
| Si
 
| 2
 
| H
 
| 2
 
| 2.32
 
| 0.712
 
| 150
 
| Cool down very slowly after evaporating lest you crack the source.
 
|-
 
| SiO
 
|
 
| C
 
| 6
 
| 2.13
 
| 0.87
 
| 132
 
|
 
|-
 
| SiO<sub>2</sub>
 
| 1
 
| C
 
| 6
 
| 2.2
 
| 1.07
 
| 140
 
| Please change the crystal and the upper mirror after evaporating oxide.
 
|-
 
| SrF
 
| 1
 
| C
 
| 6
 
| 4.28
 
| 0.727
 
| 140
 
|
 
|-
 
| Ta
 
| 1
 
| H
 
| 6
 
| 16.6
 
| 0.262
 
|
 
| Requires extremely high current. Minimum 35 minute cool down. Hearth #3 may be used. Call me before you try Ta.
 
|-
 
| W
 
| 1
 
| C
 
| 6
 
| 19.3
 
| 0.163
 
| 138
 
|
 
|-
 
| Ti
 
| 3
 
| H
 
| 3
 
| 4.50
 
| 0.628
 
| 139
 
|
 
|}
 
   
 
= Detailed Specifications =
 
= Detailed Specifications =
Line 239: Line 29:
 
*Deposition Control: Inficon IC 6000, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
 
*Deposition Control: Inficon IC 6000, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
 
*Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
 
*Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
  +
*Pieces up to Four - 4" wafers in one run.
  +
*For single wafers: tilt with motorized rotation and sample lowering for higher effective rates, sidewall coverage, angled evaporation.
  +
  +
=Documentation=
  +
*[[media:New Operating Instructions Ebeam.pdf|Operating Instructions]]

Latest revision as of 13:12, 3 April 2018

E-Beam 1 (Sharon)
E-beam1.jpg
Tool Type Vacuum Deposition
Location Bay 3
Supervisor Brian Lingg
Supervisor Phone (805) 893-8145
Supervisor E-Mail lingg_b@ucsb.edu
Description Four Pocket Electron Beam Evaporator
Manufacturer Sharon Vacuum Co., Inc.
Vacuum Deposition Recipes
Sign up for this tool


About

The Sharon is a cryo-pumped thin film evaporator with a Temescal four hearth 270° bent electron beam evaporation source. The system incorporates a Commonwealth Scientific Corp. ion source for in-situ sample cleaning. Fixturing in the Sharon will accept any size sample up to 3.5-inch diameter. In addition, a rotation fixture is easily installed which permits adjustable angle, 360° variable speed rotation of any size sample, up to 1.5-inch diameter. This feature is particularly useful for promoting step coverage of irregular surfaces.

A new fixture allowing up to four - 4" diameter wafers is now installed.

The Sharon is used for the evaporation of high purity metals, e.a. Al, Au, Ni, Ge, AuGe, Ti, Pt etc., for interconnect and ohmic contact metalization for fabrication of III-V compound semiconductor and silicon device fabrication.

Materials Table

For the materials tables and deposition parameters for various materials, please visit the E-Beam Recipe Page.

Detailed Specifications

  • Cryopump: CTI Cryotorr 8F with air-cooled compressor
  • Pumping speed: 4,000 l/sec. for H2O, 1,500 l/sec. for air, 2,200 l/sec. for H2, 200 l/sec. for Ar
  • Mechanical Pump: Varian, Model SD700, 35 CFM
  • Electron Beam Source: Temescal, Model STIH-270-2MB, four 15 cc hearths
  • Electron Beam Power Supply: Temescal, Model CV8A-111, -5 to -10 kV dc, 0.8A dc max. beam current; XYS-8 Sweep Control
  • Deposition Control: Inficon IC 6000, 6 film programs; 37 parameters for automatic or manual deposition control based on a resonating quartz crystal sensor
  • Ion Source: Commonwealth Scientific Corp., MOD. 2. Kaufman-type, 3cm ion source; beam currents to 100mA at 1000eV
  • Pieces up to Four - 4" wafers in one run.
  • For single wafers: tilt with motorized rotation and sample lowering for higher effective rates, sidewall coverage, angled evaporation.

Documentation