Wet Etching Recipes

From UCSB Nanofab Wiki
Revision as of 21:33, 15 June 2023 by John d (talk | contribs) (→‎Table of Wet Etching Recipes: added selective substrate removal recipes for GaAs/AlGaAs (from Garrett Cole), oxide removal dips for InP, GaAs (from memory))
Jump to navigation Jump to search

Chemicals Available

  • The Chemical Lists show stocked chemicals, photolithography chemicals, and how to bring new chemicals.

Table of Wet Etching Recipes

Use the ↑ ↓ Arrows in the header row to sort the entire table by material, selectivity, etchant etc.

Material Etchant Rate (nm/min) Anisotropy Selective to Selectivity Ref. Notes Confirmed By/Date
InP H3PO4:HCl = 3:1 ~1000 Highly InGaAs High Lamponi (p.102) Bubbles while etching
InP H3PO4:HCl = 3:1 ~1000 Highly InGaAsP High Lamponi (p.102) Bubbles while etching
InGaAsP To Be Added InP High
InGaAs To Be Added InP High
GaAs NH4OH:H2O2 = 1:30 - AlGaAs, Al%>>80% High, AlGaAs ≥200nm Garrett Cole
AlGaAs, Al ≥80% HF:H2O = 1:20 - GaAs High Garrett Cole
Oxide of InP NH4OH:H2O = 1:10 1min to remove InP unknown Ning Cao
Oxide of GaAs HCl:H2O = 1:10 1min to remove GaAs unknown Demis D. John
Al2O3 (ALD Plasma 300C) Developer: 300MIF ~1.6 None Most non-Al Materials. High Measured in-house Rate slows with time. JTB
Al2O3 (ALD Plasma 300C) Developer: 400K ~2.2 None Most non-Al Materials. High Measured in-house Rate slows with time. JTB
Al2O3 (ALD Plasma 300C) Developer: 400K (1:4) ~1.6 None Most non-Al Materials. High Measured in-house Rate slows with time. JTB
Al2O3 (ALD Plasma 300C) NH4OH:H2O2:H2O (1:2:50) ~<0.5 Measured in-house Rate slows with time JTB
Al2O3 (IBD) HF ("Buffered HF Improved", Transene) ~170 None Photoresist High Measured in-house May need to increase adhesion with thin SiO2 layer, and 100°C baked HMDS. Biljana Stamenic,

2017-12

Al2O3 (IBD) Developer: 726 MiF 3.5 None Most non-Al Materials. High Measured in-house Demis D. John,

2017-11

Al2O3 (AJA#4) Developer: 300 MiF 4.30 None Most non-Al Materials. High Measured in-house Demis D. John

2018-02

SiO2 (PECVD #1) HF ("Buffered HF Improved", Transene) ~500 None Photoresist High Measured in-house May need to increase adhesion with 100°C baked HMDS. Biljana Stamenic

2017

SiO2 (PECVD #2) HF ("Buffered HF Improved", Transene) ~500 None Photoresist High Measured in-house May need to increase adhesion with 100°C baked HMDS. Biljana Stamenic

2017

SiO2 (IBD) HF ("Buffered HF Improved", Transene) ~350 None Photoresist High Measured in-house Biljana Stamenic

2016

Si3N4 (PECVD#1) HF ("Buffered HF Improved", Transene) 85 None Photoresist High Measured in-house Biljana Stamenic

2018-04

Si3N4 (PECVD#2) HF ("Buffered HF Improved", Transene) 35–45 None Photoresist High Measured in-house Biljana Stamenic

2018-05

Si3N4 Low-Stress (PECVD#2) HF ("Buffered HF Improved", Transene) 35–50 None Photoresist High Measured in-house Biljana Stamenic

2018-05

Si3N4 (IBD) HF ("Buffered HF Improved", Transene) 5–15 None Photoresist High Measured in-house Biljana Stamenic

2014

Ta2O5 (IBD) HF ("Buffered HF Improved", Transene) 0.4 None Photoresist High Measured in-house Biljana Stamenic

2016-12

TiO2 (IBD) HF ("Buffered HF Improved", Transene) 1.0–2.0 None Photoresist High Measured in-house Biljana Stamenic

2014-12

Si (<100> crystalline) KOH (45%) @ 87°C ~730 High, Crystallographic, ~55° Low-Stress Si3N4 - either PECVD #2 or Commercial LPCVD Si3N4

Other Si3N4 also OK.

LS-SiN: High

PR etches quickly, SiO2 etches slowly.

Measured In-House

- Search online.

Use the Covered, Heated vertical bath (Dedi cated bath in Bay 4). Slight Bubbler. Brian Thibeault

2017

Material Etchant Rate (nm/min) Anisotropy Selective to Selectivity Ref. Notes Confirmed By/Date

Adding a new entry to the Table

When entering a new etch into the table:

  • Make a row for every etchant used in the solution such that the information can be sorted by etchant. For example, the InP etch HCl:H3PO4(1:3) and H3PO4:HCl(3:1).
  • Likewise, if etch is known to be selective to multiple materials the etch should have a row for each material. For example HCl:H3PO4(1:3) is selective to both InGaAs and InGaAsP.

This multiple entry method may seem laborious for the person entering a new etch, however the power of sorting by selective materials and chemicals in a table with all materials is great.

Material Etchant Rate (nm/min) Anisotropy Selective to Selectivity Ref. Notes Confirmed by Extra column
InP H3PO4:HCl(3:1) ~1000 Highly InGaAs High Lamponi (p.102) Example Jon Doe Example
InP H3PO4:HCl(3:1) ~1000 Highly InGaAsP High Lamponi (p.102) Example Jon Doe Example

Wet Etching References

  1. Etch rates for Micromachining Processing (IEEE Jnl. MEMS, 1996) - includes tables of etch rates of numerous metals vs. various wet and dry etchants.
  2. Etch rates for micromachining-Part II (IEEE Jnl. MEMS, 2003) - expanded tables containing resists, dielectrics, metals and semiconductors vs. many wet etch chemicals.
  3. Guide to references on III±V semiconductor chemical etching - exhaustive list of wet etchants for etching various semiconductors, including selective etches.
  4. Transene's Chemical Compatibility Chart provides a useful quick-reference for which Transene etchants attack which materials.
    1. As a side-note, Transene provides many pre-mixed solutions that you can order, saving you the time and uncertainty of measuring/mixing such chemicals yourself. Make sure you check with us before ordering so we know how to handle the chemical before it arrives.

Compound Semiconductor Etching

Guide to references on III±V semiconductor chemical etching

Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).

Metal Etching

Silicon etching

Etch rates for micromachining processing

Etch rates for micromachining processing-part II

Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).

Organic removal

Gold Plating

To Be Added

Chemi-Mechanical Polishing (CMP)

To Be Added

Mechanical Polishing (Allied)

To Be Added