Difference between revisions of "Wet Etching Recipes"

From UCSB Nanofab Wiki
Jump to navigation Jump to search
(→‎The Master Table of Wet Etching (Include All Materials): deleted 2nd "Extra Notes" column, combined date into "Verified by")
Line 61: Line 61:
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
! Material !! Etchant !! Rate (nm/min) !! Anisotropy !! Selective to !! Selectivity !! Ref. !! Notes !! Confirmed by !! Extra Notes
+
! Material !! Etchant !! Rate (nm/min) !! Anisotropy !! Selective to !! Selectivity !! Ref. !! Notes !! Confirmed By/Date
 
|-
 
|-
| InP|| HCl:H3PO4 (1:3)|| ~1000 || Highly || InGaAs || High || [http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)] || Example || Jon Doe || Example
+
| InP|| HCl:H3PO4 (1:3)|| ~1000 || Highly || InGaAs || High || [http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)] || || Jon Doe
 
|-
 
|-
 
|InP
 
|InP
Line 72: Line 72:
 
|High
 
|High
 
|[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]
 
|[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]
 
|
|Example
 
 
|Jon Doe
 
|Jon Doe
|Example
 
 
|-
 
|-
| InP|| H3PO4:HCl (3:1)|| ~1000 || Highly || InGaAs || High || [http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)] || Example || Jon Doe || Example
+
| InP|| H3PO4:HCl (3:1)|| ~1000 || Highly || InGaAs || High || [http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)] || || Jon Doe
 
|-
 
|-
 
|InP
 
|InP
Line 85: Line 84:
 
|High
 
|High
 
|[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]
 
|[http://tel.archives-ouvertes.fr/docs/00/76/94/02/PDF/VA2_LAMPONI_MARCO_15032012.pdf Lamponi (p.102)]
 
|
|Example
 
 
|Jon Doe
 
|Jon Doe
|Example
 
 
|-
 
|-
 
| Al2O3 ''(ALD Plasma 300C)''|| Developer: 300MIF || ~1.6 || None
 
| Al2O3 ''(ALD Plasma 300C)''|| Developer: 300MIF || ~1.6 || None
 
| Most non-Al Materials.
 
| Most non-Al Materials.
| High || Measured in-house || Rate slows with time. || JTB || Example
+
| High || Measured in-house || Rate slows with time. || JTB
 
|-
 
|-
 
| Al2O3 ''(ALD Plasma 300C)''|| Developer: 400K || ~2.2 || None
 
| Al2O3 ''(ALD Plasma 300C)''|| Developer: 400K || ~2.2 || None
 
| Most non-Al Materials.
 
| Most non-Al Materials.
| High || Measured in-house || Rate slows with time. || JTB || Example
+
| High || Measured in-house || Rate slows with time. || JTB
 
|-
 
|-
 
| Al2O3 ''(ALD Plasma 300C)''|| Developer: 400K (1:4) || ~1.6 || None
 
| Al2O3 ''(ALD Plasma 300C)''|| Developer: 400K (1:4) || ~1.6 || None
 
| Most non-Al Materials.
 
| Most non-Al Materials.
| High || Measured in-house || Rate slows with time. || JTB || Example
+
| High || Measured in-house || Rate slows with time. || JTB
 
|-
 
|-
| Al2O3 ''(ALD Plasma 300C)''|| NH4OH:H2O2:H2O (1:2:50) || ~<0.5 || || |||| Measured in-house || Rate slows with time || JTB || Example
+
| Al2O3 ''(ALD Plasma 300C)''|| NH4OH:H2O2:H2O (1:2:50) || ~<0.5 || || |||| Measured in-house || Rate slows with time || JTB
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Al2O3_deposition_.28IBD.29 Al2O3 ''(IBD)'']
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Al2O3_deposition_.28IBD.29 Al2O3 ''(IBD)'']
Line 111: Line 109:
 
|Measured in-house
 
|Measured in-house
 
|May need to increase adhesion with thin SiO2 layer, and 100°C baked HMDS.
 
|May need to increase adhesion with thin SiO2 layer, and 100°C baked HMDS.
|Biljana Stamenic
+
|Biljana Stamenic,
|2017-12
+
2017-12
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Al2O3_deposition_.28IBD.29 Al2O3 ''(IBD)'']
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Al2O3_deposition_.28IBD.29 Al2O3 ''(IBD)'']
Line 119: Line 117:
 
|None
 
|None
 
|Most non-Al Materials.
 
|Most non-Al Materials.
  +
|High
|
 
 
|Measured in-house
 
|Measured in-house
 
|
 
|
|Demis D. John
+
|Demis D. John,
|2017-11
+
2017-11
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Al2O3_Deposition_.28Sputter_4.29 Al2O3 ''(AJA#4)'']
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Al2O3_Deposition_.28Sputter_4.29 Al2O3 ''(AJA#4)'']
Line 130: Line 128:
 
|None
 
|None
 
|Most non-Al Materials.
 
|Most non-Al Materials.
  +
|High
|
 
 
|Measured in-house
 
|Measured in-house
 
|
 
|
 
|Demis D. John
 
|Demis D. John
|2018-02
+
2018-02
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiO2_deposition_.28PECVD_.231.29 SiO2 ''(PECVD #1)'']
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiO2_deposition_.28PECVD_.231.29 SiO2 ''(PECVD #1)'']
Line 145: Line 143:
 
|May need to increase adhesion with 100°C baked HMDS.
 
|May need to increase adhesion with 100°C baked HMDS.
 
|Biljana Stamenic
 
|Biljana Stamenic
|2017
+
2017
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiO2_deposition_.28PECVD_.232.29 SiO2 ''(PECVD #2)'']
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiO2_deposition_.28PECVD_.232.29 SiO2 ''(PECVD #2)'']
Line 156: Line 154:
 
|May need to increase adhesion with 100°C baked HMDS.
 
|May need to increase adhesion with 100°C baked HMDS.
 
|Biljana Stamenic
 
|Biljana Stamenic
|2017
+
2017
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#SiO2_deposition_.28IBD.29 SiO2 (IBD)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#SiO2_deposition_.28IBD.29 SiO2 (IBD)]
Line 167: Line 165:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2016
+
2016
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiN_deposition_.28PECVD_.231.29 Si3N4 (PECVD#1)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiN_deposition_.28PECVD_.231.29 Si3N4 (PECVD#1)]
Line 178: Line 176:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2018-04
+
2018-04
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiN_deposition_.28PECVD_.232.29 Si3N4 (PECVD#2)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#SiN_deposition_.28PECVD_.232.29 Si3N4 (PECVD#2)]
Line 189: Line 187:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2018-05
+
2018-05
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#Low-Stress_SiN_deposition_.28PECVD_.232.29 Si3N4 Low-Stress (PECVD#2)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/PECVD_Recipes#Low-Stress_SiN_deposition_.28PECVD_.232.29 Si3N4 Low-Stress (PECVD#2)]
Line 200: Line 198:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2018-05
+
2018-05
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Si3N4_deposition_.28IBD.29 Si3N4 (IBD)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Si3N4_deposition_.28IBD.29 Si3N4 (IBD)]
Line 211: Line 209:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2014
+
2014
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Ta2O5_deposition_.28IBD.29 Ta2O5 (IBD)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#Ta2O5_deposition_.28IBD.29 Ta2O5 (IBD)]
Line 222: Line 220:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2016-12
+
2016-12
 
|-
 
|-
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#TiO2_deposition_.28IBD.29 TiO2 (IBD)]
 
|[https://wiki.nanotech.ucsb.edu/wiki/index.php/Sputtering_Recipes#TiO2_deposition_.28IBD.29 TiO2 (IBD)]
Line 233: Line 231:
 
|
 
|
 
|Biljana Stamenic
 
|Biljana Stamenic
|2014-12
+
2014-12
 
|-
 
|-
 
|Si (<100> crystalline)
 
|Si (<100> crystalline)
 
|KOH (45%) @ 87°C
 
|KOH (45%) @ 87°C
 
|~730
 
|~730
|High, Crystallographic
+
|High, Crystallographic, ~55°
 
|Low-Stress Si3N4 - either [[PECVD Recipes#Low-Stress SiN deposition .28PECVD .232.29|PECVD #2]] or Commercial LPCVD Si3N4
 
|Low-Stress Si3N4 - either [[PECVD Recipes#Low-Stress SiN deposition .28PECVD .232.29|PECVD #2]] or Commercial LPCVD Si3N4
 
Other Si3N4 also OK.
 
Other Si3N4 also OK.
|High
+
|LS-SiN: High
  +
PR etches quickly, SiO2 etches slowly.
 
|Measured In-House
 
|Measured In-House
  +
- Search online.
 
|Use the Covered, Heated vertical bath ([[Wet Benches#Wafer Toxic Corrosive Benches|Dedi cated bath in Bay 4]]). Slight Bubbler.
 
|Use the Covered, Heated vertical bath ([[Wet Benches#Wafer Toxic Corrosive Benches|Dedi cated bath in Bay 4]]). Slight Bubbler.
 
|Brian Thibeault
 
|Brian Thibeault
|2017
+
2017
 
|}
 
|}
   

Revision as of 10:01, 14 July 2021

See the Master Wet Etching Table at the bottom of this page for wet-etch rates in various experiments we have tested.

Chemicals Available

  • The Chemical Lists show stocked chemicals, photolithography chemicals, and how to bring new chemicals.

References

  1. Etch rates for Micromachining Processing (IEEE Jnl. MEMS, 1996) - includes tables of etch rates of numerous metals vs. various wet and dry etchants.
  2. Etch rates for micromachining-Part II (IEEE Jnl. MEMS, 2003) - expanded tables containing resists, dielectrics, metals and semiconductors vs. many wet etch chemicals.
  3. Guide to references on III±V semiconductor chemical etching - exhaustive list of wet etchants for etching various semiconductors, including selective etches.
  4. Transene's Chemical Compatibility Chart provides a useful quick-reference for which Transene etchants attack which materials.
    1. As a side-note, Transene provides many pre-mixed solutions that you can order, saving you the time and uncertainty of measuring/mixing such chemicals yourself. Make sure you check with us before ordering so we know how to handle the chemical before it arrives.

Compound Semiconductor Etching

Guide to references on III±V semiconductor chemical etching

Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).

Metal Etching

Silicon etching

Etch rates for micromachining processing

Etch rates for micromachining processing-part II

Please add any confirmed etches from this reference to the The Master Table of Wet Etching (Include All Materials).

Organic removal

Gold Plating

Chemi-Mechanical Polishing (CMP)

Mechanical Polishing (Allied)

Adding a new entry to the Table

When entering a new etch into the table:

  • Make a row for every etchant used in the solution such that the information can be sorted by etchant. For example, the InP etch HCl:H3PO4(1:3) and H3PO4:HCl(3:1).
  • Likewise, if etch is known to be selective to multiple materials the etch should have a row for each material. For example HCl:H3PO4(1:3) is selective to both InGaAs and InGaAsP.

This multiple entry method may seem laborious for the person entering a new etch, however the power of sorting by selective materials and chemicals in a table with all materials is great.

Material Etchant Rate (nm/min) Anisotropy Selective to Selectivity Ref. Notes Confirmed by Extra column
InP HCl:H3PO4(1:3) ~1000 Highly InGaAs High Lamponi (p.102) Example Jon Doe Example
InP HCl:H3PO4(1:3) ~1000 Highly InGaAsP High Lamponi (p.102) Example Jon Doe Example
InP H3PO4:HCl(3:1) ~1000 Highly InGaAs High Lamponi (p.102) Example Jon Doe Example
InP H3PO4:HCl(3:1) ~1000 Highly InGaAsP High Lamponi (p.102) Example Jon Doe Example

The Master Table of Wet Etching (Include All Materials)

Use the ↑ ↓ Arrows in the header row to sort the entire table by material, selectivity, etchant etc.

Material Etchant Rate (nm/min) Anisotropy Selective to Selectivity Ref. Notes Confirmed By/Date
InP HCl:H3PO4 (1:3) ~1000 Highly InGaAs High Lamponi (p.102) Jon Doe
InP HCl:H3PO4 (1:3) ~1000 Highly InGaAsP High Lamponi (p.102) Jon Doe
InP H3PO4:HCl (3:1) ~1000 Highly InGaAs High Lamponi (p.102) Jon Doe
InP H3PO4:HCl (3:1) ~1000 Highly InGaAsP High Lamponi (p.102) Jon Doe
Al2O3 (ALD Plasma 300C) Developer: 300MIF ~1.6 None Most non-Al Materials. High Measured in-house Rate slows with time. JTB
Al2O3 (ALD Plasma 300C) Developer: 400K ~2.2 None Most non-Al Materials. High Measured in-house Rate slows with time. JTB
Al2O3 (ALD Plasma 300C) Developer: 400K (1:4) ~1.6 None Most non-Al Materials. High Measured in-house Rate slows with time. JTB
Al2O3 (ALD Plasma 300C) NH4OH:H2O2:H2O (1:2:50) ~<0.5 Measured in-house Rate slows with time JTB
Al2O3 (IBD) HF ("Buffered HF Improved", Transene) ~170 None Photoresist High Measured in-house May need to increase adhesion with thin SiO2 layer, and 100°C baked HMDS. Biljana Stamenic,

2017-12

Al2O3 (IBD) Developer: 726 MiF 3.5 None Most non-Al Materials. High Measured in-house Demis D. John,

2017-11

Al2O3 (AJA#4) Developer: 300 MiF 4.30 None Most non-Al Materials. High Measured in-house Demis D. John

2018-02

SiO2 (PECVD #1) HF ("Buffered HF Improved", Transene) ~500 None Photoresist High Measured in-house May need to increase adhesion with 100°C baked HMDS. Biljana Stamenic

2017

SiO2 (PECVD #2) HF ("Buffered HF Improved", Transene) ~500 None Photoresist High Measured in-house May need to increase adhesion with 100°C baked HMDS. Biljana Stamenic

2017

SiO2 (IBD) HF ("Buffered HF Improved", Transene) ~350 None Photoresist High Measured in-house Biljana Stamenic

2016

Si3N4 (PECVD#1) HF ("Buffered HF Improved", Transene) 85 None Photoresist High Measured in-house Biljana Stamenic

2018-04

Si3N4 (PECVD#2) HF ("Buffered HF Improved", Transene) 35–45 None Photoresist High Measured in-house Biljana Stamenic

2018-05

Si3N4 Low-Stress (PECVD#2) HF ("Buffered HF Improved", Transene) 35–50 None Photoresist High Measured in-house Biljana Stamenic

2018-05

Si3N4 (IBD) HF ("Buffered HF Improved", Transene) 5–15 None Photoresist High Measured in-house Biljana Stamenic

2014

Ta2O5 (IBD) HF ("Buffered HF Improved", Transene) 0.4 None Photoresist High Measured in-house Biljana Stamenic

2016-12

TiO2 (IBD) HF ("Buffered HF Improved", Transene) 1.0–2.0 None Photoresist High Measured in-house Biljana Stamenic

2014-12

Si (<100> crystalline) KOH (45%) @ 87°C ~730 High, Crystallographic, ~55° Low-Stress Si3N4 - either PECVD #2 or Commercial LPCVD Si3N4

Other Si3N4 also OK.

LS-SiN: High

PR etches quickly, SiO2 etches slowly.

Measured In-House

- Search online.

Use the Covered, Heated vertical bath (Dedi cated bath in Bay 4). Slight Bubbler. Brian Thibeault

2017