Difference between revisions of "Fluorine ICP Etcher (PlasmaTherm/SLR Fluorine ICP)"

From UCSB Nanofab Wiki
Jump to navigation Jump to search
(27 intermediate revisions by 7 users not shown)
Line 2: Line 2:
 
|picture=SiDeep.jpg
 
|picture=SiDeep.jpg
 
|type = Dry Etch
 
|type = Dry Etch
|super= Don Freeborn
+
|super= Brian Lingg
 
|phone= 805-893-3918x216
 
|phone= 805-893-3918x216
 
|location=Bay 2
 
|location=Bay 2
Line 9: Line 9:
 
|manufacturer = Plasmatherm (Unaxis)
 
|manufacturer = Plasmatherm (Unaxis)
 
|materials =
 
|materials =
  +
|toolid=28
 
}}
 
}}
   
 
= About =
 
= About =
   
The SiRIE system is a Plasma-Therm 770 SLR series system with a loadlock. The system has an Inductively Coupled Plasma (ICP) coil and a capactively coupled substrate RF supply to independently control plasma density and ion energy in the system. This system is dedicated to deep etching in silicon for MEMs structures. The Bosch process is used for obtaining the deep, vertical, high aspect ratio structures. This process cycles between a polymer deposition cycle using C<sub>4</sub>F<sub>8</sub> gas and no substrate bias, and an etching cycle using a SF<sub>6</sub> / Ar mixture with substrate bias. The system is fully computer controlled in all aspects of the pumping cycles and process control, and can be programmed by the user. The fixturing is configured for 4" diameter Si wafers and uses a clamp to hold the sample on the RF chuck.
+
The system is a Plasma-Therm 770 SLR series system with a loadlock. The system has an Inductively Coupled Plasma (ICP) coil and a capactively coupled substrate RF supply to independently control plasma density and ion energy in the system. The system is fully computer controlled in all aspects of the pumping cycles and process control, and can be programmed by the user. The fixturing is configured for 4" diameter Si wafers and uses a clamp to hold the sample on the RF chuck.
   
 
The materials allowed in the system are limited to Silicon, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, SiO<sub>X</sub>N<sub>Y</sub>, and polymer films such as photoresist, PMMA, and polyimide. Other materials can be placed in the chamber, such as metal layers on the surface, only if they will remain completely protected from the plasma by an allowed material during the entire etch. Some alternate stop-etch materials may be allowed upon discussion with facility staff.
 
The materials allowed in the system are limited to Silicon, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, SiO<sub>X</sub>N<sub>Y</sub>, and polymer films such as photoresist, PMMA, and polyimide. Other materials can be placed in the chamber, such as metal layers on the surface, only if they will remain completely protected from the plasma by an allowed material during the entire etch. Some alternate stop-etch materials may be allowed upon discussion with facility staff.
   
He back-side cooling is used to keep the sample cool during the etch. This is very important as the polymer passivation layer is chemically etched away by the fluorine gas at elevated temperatures, resulting in loss of profile control. Pieces of wafers can be mounted onto 4" silicon wafers using thin, uniform, bubble-free hard baked photoresist. The etch rate is dependent on the open area of silicon (macro-loading effect) with large open area samples etching slower than small open area samples. Features with a high aspect ratio will also etch slower than more open areas. This is known as RIE lag or the micro-loading effect.
+
Helium back-side cooling is used to keep the sample cool during the etch. Temperature control is very important as the polymer passivation layer is chemically etched away by the fluorine gas at elevated temperatures, resulting in loss of profile control. Pieces of wafers can be mounted onto 4" silicon wafers using thin, uniform, bubble-free hard baked photoresist. The etch rate is dependent on the open area of silicon (macro-loading effect) with large open area samples etching slower than small open area samples. Features with a high aspect ratio will also etch slower than more open areas. This is known as RIE lag or the micro-loading effect.
   
 
= Detailed Specifications =
 
= Detailed Specifications =
   
 
*1000 W ICP coil power at 2 MHz and 500 W substrate bias at 13.56 MHz plasma generators
 
*1000 W ICP coil power at 2 MHz and 500 W substrate bias at 13.56 MHz plasma generators
*C<sub>4</sub>F<sub>8</sub>, SF<sub>6</sub>, O<sub>2</sub>, Ar, N<sub>2</sub> gases available
+
*C<sub>4</sub>F<sub>8</sub>, SF<sub>6</sub>, O<sub>2</sub>, Ar, N<sub>2,</sub> CHF<sub>3,</sub> CF<sub>4</sub> gases available
 
*He-back-side cooling
 
*He-back-side cooling
 
*Windows-based computer control of process and wafer handling
 
*Windows-based computer control of process and wafer handling
 
*Allowed materials: Silicon, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, SiO<sub>X</sub>N<sub>Y</sub>, and polymer films such as photoresist, PMMA, and polyimide; other stop-etch materials on request
 
*Allowed materials: Silicon, SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, SiO<sub>X</sub>N<sub>Y</sub>, and polymer films such as photoresist, PMMA, and polyimide; other stop-etch materials on request
*Realized etch rates (including passivation steps) of &gt; 3 um / min. Using the standard Plasma Therm recipe, a nominal etch rate of 2 um / min. is achieved; etch rate dependent on conditions and open area
+
*Realized etch rates (including passivation steps) of &gt; 3 µm / min. Using the standard Plasma Therm recipe, a nominal etch rate of 2 um / min. is achieved; etch rate dependent on conditions and open area
  +
*Laser monitoring with camera and etch simulation software for stopping etch within partially-etched layers - Intellemetrics
  +
  +
=Documentation=
  +
*{{file|Running_a_process_on_Plasma_Therm_SLR.pdf|Fluorine Etcher Operating Instructions (Cortex Software)}}
  +
  +
*{{file|How to restart the software on Si Deep Etch.pdf|How to restart software on Plasma-Therm Cortex Software}}
  +
  +
= Recipes =
  +
Etch recipes can be found on the following page: [https://wiki.nanotech.ucsb.edu/wiki/index.php/ICP_Etching_Recipes#PlasmaTherm.2FSLR_Fluorine_Etcher Dry Etching Recipes > PlasmaThemr/SLR Fluorine Etcher]
  +
  +
You can see a full list of all tools and all materials able to be etched by each on our [[Dry Etching Recipes|Dry Etching Recipes Table]].

Revision as of 10:31, 15 April 2020

Fluorine ICP Etcher (PlasmaTherm/SLR Fluorine ICP)
SiDeep.jpg
Tool Type Dry Etch
Location Bay 2
Supervisor Brian Lingg
Supervisor Phone (805) 893-8145
Supervisor E-Mail lingg_b@ucsb.edu
Description SiRIE Based Flourine Etcher for Bosch MEMS Processes
Manufacturer Plasmatherm (Unaxis)
Dry Etch Recipes
Sign up for this tool



About

The system is a Plasma-Therm 770 SLR series system with a loadlock. The system has an Inductively Coupled Plasma (ICP) coil and a capactively coupled substrate RF supply to independently control plasma density and ion energy in the system. The system is fully computer controlled in all aspects of the pumping cycles and process control, and can be programmed by the user. The fixturing is configured for 4" diameter Si wafers and uses a clamp to hold the sample on the RF chuck.

The materials allowed in the system are limited to Silicon, SiO2, Si3N4, SiOXNY, and polymer films such as photoresist, PMMA, and polyimide. Other materials can be placed in the chamber, such as metal layers on the surface, only if they will remain completely protected from the plasma by an allowed material during the entire etch. Some alternate stop-etch materials may be allowed upon discussion with facility staff.

Helium back-side cooling is used to keep the sample cool during the etch. Temperature control is very important as the polymer passivation layer is chemically etched away by the fluorine gas at elevated temperatures, resulting in loss of profile control. Pieces of wafers can be mounted onto 4" silicon wafers using thin, uniform, bubble-free hard baked photoresist. The etch rate is dependent on the open area of silicon (macro-loading effect) with large open area samples etching slower than small open area samples. Features with a high aspect ratio will also etch slower than more open areas. This is known as RIE lag or the micro-loading effect.

Detailed Specifications

  • 1000 W ICP coil power at 2 MHz and 500 W substrate bias at 13.56 MHz plasma generators
  • C4F8, SF6, O2, Ar, N2, CHF3, CF4 gases available
  • He-back-side cooling
  • Windows-based computer control of process and wafer handling
  • Allowed materials: Silicon, SiO2, Si3N4, SiOXNY, and polymer films such as photoresist, PMMA, and polyimide; other stop-etch materials on request
  • Realized etch rates (including passivation steps) of > 3 µm / min. Using the standard Plasma Therm recipe, a nominal etch rate of 2 um / min. is achieved; etch rate dependent on conditions and open area
  • Laser monitoring with camera and etch simulation software for stopping etch within partially-etched layers - Intellemetrics

Documentation

Recipes

Etch recipes can be found on the following page: Dry Etching Recipes > PlasmaThemr/SLR Fluorine Etcher

You can see a full list of all tools and all materials able to be etched by each on our Dry Etching Recipes Table.