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Towards THz Transistors and Template Assisted Selective Epitaxy

Brian Markman, University of California, Santa Barbara, CA

Abstract. As 5G (25-100GHz) begins to roll out globally, research must shift focus to
communication systems beyond 5G (=100 GHz). For communications systems to work efficiently
at 100-340 GHz, the transistors that form their foundation must be able to provide gain and low
noise figure at those frequencies. Conseguently, the transstors must operate beyond 1 THz.
However, a highly scaled MOSFET's RF performance is limited by end capacitance while modern
HEMTs are limited by high gate leakage and comparatively less capacitive control of the channel.
We present a new device that combines an intrinsic MOSFET with HEMT-like access regions
operating to and a roadmap to =1 THz. Additionally, template fabrication for template assisted
selective epitaxy (TASE) will be discussed as a route towards higher frequency bipolar transistors,
integration of lll-V on Si, and as a technigue to develop laterally oriented heterojunction devices.
Challenges in template fabrication, basic growth frends, and design considerations will be
discussed.

Biography: Brian Markman graduated in Materials Science and Engineering with a focus on Electronic and Photonic Materials at
Pennsylvania State University in 2015. There he worked on improvement of passie light collection for solar cells, organic micro-disk
lasers, and chemical vapor deposition of 2D materials. In 2016 he joined the Rodwell High Frequency Electronics group at UCSB where he
currently works on THz MOS-HEMTs and Tunnel FETs.




UNIVERSITY O F CALIFORNIA SANTA BARBARA

ELECTRICAL AND COMPUTER ENGINEERING

miiilt ComSenTer

COMMUNICATIONS SENSING TERAHERTZ

Towards THz Transistors and Template Assisted Selective Epitaxy

Brian Markman, University of California, Santa Barbara, CA

Abstract. As 5G (25-100GHz) begins to roll out globally, research must shift focus to
communication systems beyond 5G (=100 GHz). For communications systems to work efficiently
at 100-340 GHz, the transistors that form their foundation must be able to provide gain and low
noise figure at those frequencies. Conseguently, the transstors must operate beyond 1 THz.
However, a highly scaled MOSFET's RF performance is limited by end capacitance while modern
HEMTs are limited by high gate leakage and comparatively less capacitive control of the channel.
We present a new device that combines an intrinsic MOSFET with HEMT-like access regions
operating to and a roadmap to =1 THz. Additionally, template fabrication for template assisted
selective epitaxy (TASE) will be discussed as a route towards higher frequency bipolar transistors,
integration of lll-V on Si, and as a technigue to develop laterally oriented heterojunction devices.
Challenges in template fabrication, basic growth frends, and design considerations will be
discussed.

Biography: Brian Markman graduated in Materials Science and Engineering with a focus on Electronic and Photonic Materials at
Pennsylvania State University in 2015. There he worked on improvement of passie light collection for solar cells, organic micro-disk
lasers, and chemical vapor deposition of 2D materials. In 2016 he joined the Rodwell High Frequency Electronics group at UCSB where he
currently works on THz MOS-HEMTs and Tunnel FETs.

1. LT IASAYIA € Yo ¢EDKR I FINRodd] dzZNE 2 N



UNIVERSITY O F CALIFORNIA SANTA BARBARA

ELECTRICAL AND COMPUTER ENGINEERING

miiilt ComSenTer

COMMUNICATIONS SENSING TERAHERTZ

Towards THz Transistors and Template Assisted Selective Epitaxy

Brian Markman, University of California, Santa Barbara, CA

Abstract. As 5G (25-100GHz) begins to roll out globally, research must shift focus to
communication systems beyond 5G (=100 GHz). For communications systems to work efficiently
at 100-340 GHz, the transistors that form their foundation must be able to provide gain and low
noise figure at those frequencies. Conseguently, the transstors must operate beyond 1 THz.
However, a highly scaled MOSFET's RF performance is limited by end capacitance while modern
HEMTs are limited by high gate leakage and comparatively less capacitive control of the channel.
We present a new device that combines an intrinsic MOSFET with HEMT-like access regions
operating to and a roadmap to =1 THz. Additionally, template fabrication for template assisted
selective epitaxy (TASE) will be discussed as a route towards higher frequency bipolar transistors,
integration of lll-V on Si, and as a technigue to develop laterally oriented heterojunction devices.
Challenges in template fabrication, basic growth frends, and design considerations will be
discussed.

Biography: Brian Markman graduated in Materials Science and Engineering with a focus on Electronic and Photonic Materials at
Pennsylvania State University in 2015. There he worked on improvement of passie light collection for solar cells, organic micro-disk
lasers, and chemical vapor deposition of 2D materials. In 2016 he joined the Rodwell High Frequency Electronics group at UCSB where he
currently works on THz MOS-HEMTs and Tunnel FETs.

1. LT 3IAGAYII € Yo ¢EOKR | FINRoDd] dzZNB 2 N



UNIVERSITY O F CALIFORNIA SANTA BARBARA

ELECTRICAL AND COMPUTER ENGINEERING

Towards THz Transistors and Template Assisted Selective Epitaxy

Brian Markman, University of California, Santa Barbara, CA

Abstract. As 5G (25-100GHz) begins to roll out globally, research must shift focus to
communication systems beyond SG (=100 GHz). For communications systems to work efficiently
at 100-340 GHz, the transistors that form their foundation must be able to provide gain and low
noise figure at those frequencies. Conseguently, the transstors must operate beyond 1 THz.
However, a highly scaled MOSFET's RF performance is limited by end capacitance while modern
HEMTs are limited by high gate leakage and comparatively less capacitive control of the channel.
We present a new device that combines an intrinsic MOSFET with HEMT-like access regions
operating to and a roadmap to =1 THz. Additionally, template fabrication for template assisted
selective epitaxy (TASE) will be discussed as a route towards higher frequency bipolar transistors,
integration of lll-V on Si, and as a technigue to develop laterally oriented heterojunction devices.
Challenges in template fabrication, basic growth trends, and design considerations will be
discussed.

Biography: Brian Markman graduated in Materials Science and Engineering with a focus on Electronic and Photonic Materials at
Pennsylvania State University in 2015. There he worked on improvement of passie light collection for solar cells, organic micro-disk
lasers, and chemical vapor deposition of 2D materials. In 2016 he joined the Rodwell High Frequency Electronics group at UCSB where he
currently works on THz MOS-HEMTs and Tunnel FETs.

1. LT 3IASAYIA € Yo ¢EDOKR | FINRoOd] dzNB
2.t FNBylday R2y Qi 3IALDBS {AR&a& fwmy
It can only bite them in the ass

miiilt ComSenTer

COMMUNICATIONS SENSING TERAHERTZ



53¢ jUMP

MOSHEMT Introduction
A Beyond 5G Application
A Design Challenges
A Proposed INA$ShPMOSHEMT Design
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A Fabrication Process
A Highk Quality
A Modulation Doped Access Regions
AQ 1 Y OOMOSHEMT demonstration

3. Template Assisted Selective Epitaxy (TASE) Introduction
A Heterogenous Integration & Heterojunction Turning
A Design Challenges & Fabrication Process

4. TASE Examples
A Homoepitaxy
A Hetero-epitaxy
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Motivation¢ Beyond 5G
ADemand for information/connectivity increasing explosively

spatially-multiplexed mm-wave base stations spatially-multiplexed mm-wave base stations \
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- or optical backhaul

. _ - or optical backhaul
Reprinted with permission of Mark Rodwell

Alndustry currently introducing 5G (28, 38,-3%, 7186 GHz)
ABeyond 5G requires 16840 GHz communication systems
AWireless for EndUser and Backhaul will require higher data rates :
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How to Increas&? ? Look to Ballistic FET 1neory

A Electron travels 8 D without scattering, can derive 1V from E(K)
A Highk roughness/norepitaxial interfacep o mé &

A Independent o) A except short channel effects
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Tradltlonal FET Scaling Léew Broken)

FET parameter change

gate length decrease 2:1
dielectric equivalent thickness decrease 2:1
channel thickness decrease 2:1
channel state density Increase 2:1

contact resistivities decrease 4:1
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FET parameter change

gate length decrease 2:1
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Difficult to scaléQ asd and0 near minimum + othed contributors

Highly scaled MOSFETSs have large due to packing densitﬂ




