Etching Platinum using Oxford Ion Mill Tool

Object: To get the etch rate and selectivity ($\mathrm{Al}_{2} \mathrm{O}_{3}$ as an etch mask), as well as etch profile, of Pt by using Oxford lon Mill tool.

Experimental:

1) Wafer Clean: three 4" Si wafers cleaned by a) soaking in acetone (2 ' in ultrasonic bath) and methanol (1' in ultrasonic bath), then, DI water rinse; b) dipping them in buffered HF in 1^{\prime}, then, DI water rinse and nitrogen gas blow dry.
2) Depositing Ti/Pt (10/500 nm: nominal thickness) using E-beam\#4.
3) Lithography for making the etch pattern:
a) Dehydration bake at 115 C for 5 minutes.
b) Spinning-on HMDS: 3000 rpm for 30 s .
c) Spinning-on SF-8 (PMGI): 1500 rpm for 40 s .
d) Bake at 200 C for 3 minutes.
e) Spinning-on SPR955-0.9: 3000 rpm for 30 s .
f) Bake at 95 C for 90 s .
g) Exposing using Auto-stepper200 for shooting an 11X11 array with 0.35 s (Recipe name: Ning) using the calibration reticle.
h) Post Exposure bake at 110 C for 90 s .
i) Development in AZ300MIF for 3 minutes.
j) O_{2} plasma descum $300 \mathrm{mT} / 100 \mathrm{~W} 60 \mathrm{~s}$.
4) Depositing $\mathrm{Al}_{2} \mathrm{O}_{3}$ (target thickness: 350.3 nm , actual thickness: 305 nm , Tooling factor: $305.3^{* 171.1 / 350=149.2 \text {) using }}$ E-beam\#2.
5) Lifting-off $\mathrm{Al}_{2} \mathrm{O}_{3}$: a) soaking in 1165 striper in 80 C hot-water bath for 3.5 hours; b) soaking in fresh 1165 in 70 C hotwater ultrasonic wave bath for 3 minutes (ultrasonic wave was on); c) soaking in Isopropanol in room-temperature water ultrasonic wave bath for 2 minutes (ultrasonic wave was on), then, DI water rinse and nitrogen gas blow dry; d) Gasonics: recipe: \#3 for 3 minutes.
6) Cleaving the wafer into sample pieces for ion-mill.

Results:

Table 1. Etch rate and selectivity $\left(\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$, and side-wall angle of Pt under different ion-mill conditions (both Ar flow rates to neutralizer and beam are 5 sccm ; platen and chamber wall temperatures are 10 and 40 C , respectively; platen rotation is 20 rpm).

Sample\#	date	$\ln (\mathrm{mA})$	Prf (W)	$\mathrm{lb}(\mathrm{mA})$	Vb (V)	Va (V)	Incident Angle (${ }^{\circ}$)	Etch Time (minute)	Etch Rate (nm/min)	Etch Selectivity ($\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}$)	Side-wall angle (${ }^{\circ}$)
Pt01	6/24/2015	250	250	150	500	500	0	6	56.7	5.7	54.7
Pt02	6/24/2015	250	250	150	500	500	15	6	54.8	3.9	62.9
Pt03	6/24/2015	250	250	150	500	500	-15	6	56.7	5	61.9
Pt04	6/24/2015	250	250	150	500	500	-30	6	55.3	3.1	68.3
Pt05	6/25/2015	250	200	100	500	500	-15	9	38.3	5.9	58.1
Pt06	6/25/2015	250	250	150	500	250	15	6	66	4.1	60.7
Pt07	6/29/2015	250	250	150	500	500	30	6	52.7	2.7	64.1
Pt08	6/29/2015	250	250	150	500	500	45	6	45	1.6	71.7
Pt10	6/30/2015	250	200	150	250	500	-15	8	37.1	5	60
Pt12	7/1/2015	250	200	50	250	500	-15	25	11.3	5.5	60.1
Pt13	7/2/2015	250	150	50	500	500	-15	20	16.2	5	64.5
Pt14	7/2/2015	250	200	100	250	500	-15	15	22.9	5.8	60.2
Pt15	7/6/2015	250	150	50	125	500	-15	50	5.7	5.4	52.9
Pt16	7/7/2015	250	150	25	250	500	-15	50	5	5.5	55.4

Figure 1 Cross-section of Pt layer and $\mathrm{Al}_{2} \mathrm{O}_{3}$ mask pattern before ion-mill.

Figure 2 (a) and (b) Cross-section of the milled sample Pt01 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=0^{\circ}$, and time $=6$ minutes.

Figure 3 (a) and (b) Cross-section of the milled sample Pt02 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=15^{\circ}$, and time $=6$ minutes.

Figure 4 (a) and (b) Cross-section of the milled sample Pt03 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time $=6$ minutes.

Figure 5 (a) and (b) Cross-section of the milled sample Pt04 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-30^{\circ}$, and time $=6$ minutes.

Figure 6 (a) and (b) Cross-section of the milled sample Pt05 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=200 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time $=9$ minutes.

Figure 7 (a) and (b) Cross-section of the milled sample Pt06 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=250 \mathrm{~V}$, incident angle $=15^{\circ}$, and time $=6$ minutes.

Figure 8 (a) and (b) Cross-section of the milled sample Pt07 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=30^{\circ}$, and time $=6$ minutes.

Figure 9 (a) and (b) Cross-section of the milled sample Pt08 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=250 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=45^{\circ}$, and time $=6$ minutes.

Figure 10 (a) and (b) Cross-section of the milled sample Pt10 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=200 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=250 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time $=8$ minutes.

Figure 11 (a) and (b) Cross-section of the milled sample Pt12 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{rf}}=200 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=250 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time=$=25$ minutes.

Figure 12 (a) and (b) Cross-section of the milled sample Pt13 with $I_{n}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=150 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time=20 minutes.

Figure 13 (a) and (b) Cross-section of the milled sample Pt14 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{r}}=200 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=250 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time $=15$ minutes.

Figure 14 (a) and (b) Cross-section of the milled sample Pt15 with $I_{n}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{rf}}=150 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=125 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time=50 minutes.

Figure 15 (a) and (b) Cross-section of the milled sample Pt16 with $\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{P}_{\mathrm{rf}}=150 \mathrm{~W}, \mathrm{I}_{\mathrm{b}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=250 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, incident angle $=-15^{\circ}$, and time=50 minutes.

Figure 16 Platinum etch rate and selectivity $\left(\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ as functions of Ar -ion incident angle.

Figure 17 Sidewall angle of etched platinum as a function of Ar-ion incident angle.

Etched Sidewall Angle vs Incident Angle ($\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}$,

Figure 18 Platinum etch rate and selectivity $\left(\mathrm{Pt}^{2} \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ as functions of Ar -ion beam current at a beam voltage of 500 V .

Figure 19 Sidewall angle of etched platinum as a function of Ar-ion beam current at a beam voltage of 500 V .

Etched Sidewall Angle vs Beam Current $\mathrm{I}_{\mathrm{b}}\left(\mathrm{I}_{\mathrm{n}}=\mathbf{2 5 0 m A}\right.$, $\mathrm{V}_{\mathrm{b}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, Incident Angle $=-15^{\circ}$)

Figure 20 Platinum etch rate and selectivity $\left(\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ as functions of Ar-ion beam current at a beam voltage of 250 V .

Pt Etch Rate and Selectivity $\left(\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ vs Beam Current I_{b}
$\left(\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=250 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}\right.$, Incident Angle $\left.=-15^{\circ}\right)$

Figure 21 Sidewall angle of etched platinum as a function of Ar-ion beam current at a beam voltage of 250 V .

Etched Sidewall Angle vs Beam Current $\left(\mathrm{I}_{\mathrm{n}}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{b}}=250 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{a}}=500 \mathrm{~V}$, Incident Angle $=-15^{\circ}$)

Figure 22 Platinum etch rate and selectivity $\left(\mathrm{Pt} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ as functions of Ar-ion beam voltage at a beam current of 50 mA .

Figure 23 Sidewall angle of etched platinum as a function of Ar-ion beam voltage at a beam current of 50 mA .

Etched Sidewall Angle vs Beam Voltage $\mathrm{V}_{\mathrm{b}}\left(\mathrm{I}_{\mathrm{n}}=\mathbf{2 5 0 m A}\right.$, $\mathrm{I}_{\mathrm{b}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{a}}=500 \mathrm{~V}$, Incident Angle $=-15^{\circ}$)

